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The relationship between chemical structure and gut microbial degradation rates of 14 flavonoids,
flavone, apigenin, chrysin, naringenin, kaempferol, genistein, daidzein, daidzin, puerarin, 7,4′-
dihydroxyflavone, 6,4′-dihydroxyflavone, 5,4′-dihydroxyflavone, 5,3′-dihydroxyflavone, and 4′-hy-
droxyflavone, was investigated by anaerobically fermenting the flavonoids with human gut microflora
(n ) 11 subjects). Degradation rates for the 5,7,4′-trihydroxyl flavonoids, apigenin, genistein,
naringenin, and kaempferol, were significantly faster than the other structural motifs. Puerarin was
resistant to degradation by the gut microflora. Extensive degradation of flavonoids by gut microflora
may result in lower overall bioavailability than those flavonoids that are slowly degraded because
rapidly degrading flavonoids are less likely to be absorbed intact.
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INTRODUCTION

Flavonoids are a large group of polyphenolic compounds that
are widely distributed in all plants. Fruits, vegetables, and
beverages (fruit juices, wine, tea, and coffee) are major sources
of flavonoids in the human diet, and over 4000 of these
compounds have been reported to date (1). Adequate intakes
of fruits and vegetables are reported to be associated with
reduced risks of cardiovascular disease (2) and cancer (3). These
observations may be attributed, in part, to the antioxidant effects
of flavonoids (4-7).

Flavonoids are diphenylpropanes consisting of two phenolic
rings, A and B, connected by a three carbon unit, which along
with an oxygen atom, forms the heterocyclic C ring. Flavonoids
are systematically classified into subgroups including flavones,
isoflavones, flavonols, and flavanones, which are characterized
by differences in their C ring structure (8). Differences within
these flavonoid subgroups are characterized by substitutions of
hydroxyl, methoxyl, methyl, and glycosidic groups on the A,
B, and C rings (Figure 1). Flavonoids are found in foods mainly
as O-glycosides. Glucose is the most common sugar moiety,
but other glycosidic units can include galactose, rhamnose,
arabinose, and xylose. TheO-â-glucosidic bonds of flavonoids
including the isoflavones daidzin (daidzein-7-O-â-D-glucopy-
ranoside), genistin, and glycitin are hydrolyzed in the gut by
microbial and mammalianâ-glucosidases to their aglucons,
daidzein, genistein, and glycitein, respectively (9-13).

The absorption and metabolism of flavonoid aglucons in
humans are not fully understood, but the aglucons may be

absorbed, undergo first pass hepatic metabolism (14), and be
excreted in the urine or bile (15). Intestinal bacteria can further
catabolize the flavonoid aglucons into smaller phenolic com-
pounds that can be reabsorbed by enterohepatic recirculation
via the bile duct or catabolized completely for energy (13,15-
19).

The chemical structure of flavonoids determines the extent
and rate of absorption in the gut as reflected in the amounts of
flavonoids found intact in the urine and plasma (20-23).
Previous studies by Xu et al. (20) have shown that the rate of
isoflavone degradation by human gut microflora depends on
the structure of the isoflavone. Genistein, which possesses a
5-hydroxyl, was rapidly degraded as compared to daidzein,
which does not have a 5-hydroxyl group. Lin et al. (24) have
reported that flavonoids with methoxyl groups, such as diosmetin
(5,7,3′-trihydroxy-4′-methoxyflavone), hesperetin (5,7,3′-trihy-
droxy-4-methoxyflavanone), and wogonin (5,7-dihydroxy-8-
methoxyflavone), were less rapidly degraded as compared to
flavonoids without methoxyl groups.

Microbial degradation of flavonoids with C-C-linked glucose
groups, such as puerarin (daidzein-8-C-â-D-glucopyranoside),
has not been well-studied. Puerarin is structurally similar to
daidzin but with the glucose group bound directly to the C-8
position of the A ring. Puerarin is the major isoflavone found
in kudzu (Pueraria lobata), a plant used in traditional Chinese
medicine and as a nutraceutical (25). Puerarin can be found in
commercial isoflavone dietary supplements where kudzu was
used as the sole source or in combination with soy isoflavones.

The purpose of this study was to determine the structural
characteristics of flavonoids that are important for optimal
degradation by the human gut microflora. This study compared
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the relationship of the chemical structure of 14 flavonoids,
flavone, apigenin, chrysin, naringenin, kaempferol, genistein,
daidzein, daidzin, puerarin, 7,4′-dihydroxyflavone, 6,4′-dihy-
droxyflavone, 5,4′-dihydroxyflavone, 5,3′-dihydroxyflavone, and
4′-hydroxyflavone, with their degradation rate by gut microflora
from human subjects.

MATERIALS AND METHODS

Chemicals.Genistein was synthesized according to modification of
Chang et al. (26). Daidzein and 2,4,4′-trihydroxydeoxybenzoin (THB)
were synthesized using the method of Song et al. (27). Flavone,
apigenin, chrysin, naringenin, kaempferol, puerarin, 7,4′-dihydroxy-
flavone, 6,4′-dihydroxyflavone, 5,4′-dihydroxyflavone, 5,3′-dihydroxy-
flavone, and 4′-hydroxyflavone were from Indofine Chemical Co., Inc.
(Hillsborough, NJ). Daidzin was purchased from LC Labs (Woburn,
MA). High-performance liquid chromatography (HPLC) grade aceto-
nitrile, methanol, acetic acid, dimethyl sulfoxide (DMSO), and all other
chemicals were from Fisher Scientific (Fairlawn, NJ). Milli-Q system
(Millipore Co., Bedford, MA) HPLC grade water was used to prepare
all solutions.

Subject Protocol.Approval of the study design was obtained from
the Iowa State University Human Subjects Research Committee in 2003.
Three men and eight women volunteered from Iowa State University
and the surrounding Ames area. The selection criteria required that
the subjects be in good health and not taking any medication. The
subjects’ ages ranged from 24 to 53 years (mean age) 33.8 ( 3.2
years) with a body mass index (BMI) of 20.9-25.8 kg/m2 (mean BMI
) 23.9 ( 0.9 kg/m2), respectively. The ethnicities of the subjects
included five Caucasians, three African Americans, one Chinese
immigrant, one Asian-Indian, and one Latino. All subjects provided
one fresh fecal sample in sealed sterile containers (Sage Products Inc.,
Crystal Lake, IL) that was used immediately.

Flavonoid Fermentation.Brain-heart infusion (BHI) broth media
(Difco Laboratories, Detroit, MI) was prepared according to Zheng et
al. (21). All flavonoid aglucons were dissolved in 100% DMSO. One
and a half grams of freshly voided feces was transferred to incubation
test tubes (Fisher Scientific) containing 25 mL of BHI. The flavonoids

flavone, 4′-hydroxyflavone, 5,4′-dihydroxyflavone, 6,4′-dihydroxyfla-
vone, 7,4′-dihydroxyflavone, 5,3′-dihydroxyflavone, chrysin, apigenin,
genistein, naringenin, kaempferol, and daidzein were added to the
incubation test tubes for a final concentration of 78.7µmol/L. The
fermentations were performed in duplicate. The incubation test tubes
were flushed with CO2, sealed with rubber stoppers and autoclave tape,
and then vortexed for 5 s. One milliliter was taken anaerobically from
each test tube immediately for time 0 and frozen on dry ice. The tubes
were placed in a 37°C incubator. One milliliter aliquots were sampled
from the incubation test tubes at 3, 6, 9, 12, and 24 h and frozen.
Negative controls consisted of the fecal suspension without flavonoids.
Microbial degradation by the fecal suspension was confirmed by
positive controls, which consisted of BHI media and flavonoids without
the fecal suspension.

Isoflavone Glucoside Fermentation.Stock solutions of 10 mmol/L
puerarin and 5.4 mmol/L daidzin were prepared in 80% methanol. Two
grams of fresh feces from two subjects was transferred to incubation
test tubes with 27 mL of BHI. Puerarin and daidzin stock solutions
were each added to give a final concentration of 4.8µmol/L. The control
incubation contained no isoflavones. Incubations were performed
according to the method stated above for flavonoids.

Flavonoid Extraction. THB, as an internal standard, was added at
100µmol/L to the thawed fermentation sample and slowly loaded onto
preconditioned C18 solid phase extraction cartridges (Waters Corpora-
tion, Milford, MA). The cartridge was washed twice with 2 mL of
Milli-Q system water. The flavonoids were eluted with 1 mL of 80%
methanol, filtered through 0.45µm filters, and analyzed directly by
HPLC.

HPLC Analysis. The HPLC system consisted of a Hewlett-Packard
1050 Series. Twenty microliters of sample was injected onto a reversed-
phase, 5µm, C18 AM 303 column (250 mm× 4.6 mm) (YMC Co.
Ltd., Wilmington, NC). The mobile phase consisted of 0.1% glacial
acetic acid in water (A) and 0.1% glacial acetic acid in acetonitrile
(B). Solvent B increased from 30 to 50% in 8 min, increased to 100%
in 8 min, and was held for 3 min. The gradient was recycled back to
30% in 1 min for the next run. The flow rate was 1 mL/min. The
wavelengths used for the preparation of standard curves, detection, and
quantification of flavonoid peaks were 254 and 292 nm. The minimum

Figure 1. Flavonoid subgroup structures and substitution patterns. Apigenin, 5,7,4′-trihydroxyflavone; chrysin, 5,7-dihydroxyflavone; daidzein, 7,4′-
dihydroxyisoflavone; daidzin, daidzein-7-O-â-D-glucopyranoside; puerarin, daidzein-8-C-â-D-glucopyranoside; genistein, 5,7,4′-trihydroxyisoflavone; kaempferol,
3,5,7,4′-tetrahydroxyflavone; naringenin, 5,7,4′-trihydroxyflavanone; Ogl, 7-O-â-D-glucopyranose; and Cgl, 8-C-â-D-glucopyranose. (A) A ring, (B) B ring,
and (C) C ring.
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detection limit of all flavonoids ranged from 5 to 7 nM. The gradient
elution used to separate puerarin and daidzin was of the method of
Song et al. (27). Chem station3D software (Hewlett-Packard Company,
Scientific Instruments Division, Palo Alto, CA) was used to integrate
the peak area responses and to evaluate the ultraviolet absorbance
spectra.

Data Analysis.The ratio of peak area of a flavonoid to THB (100
µmol/L) vs the flavonoid concentration was used as an internal standard
curve to estimate the concentration of flavonoids in the fecal fermenta-
tions. The rate of disappearance of flavonoids in fecal fermentation
mixtures was estimated by plotting ln(% remaining flavonoid) vs time.
The negative slope of this line was the apparent first-order degradation
rate constant. Statistical evaluation of degradation rate differences was
performed using the SAS system (version 8.1, SAS Institute., Cary,
NC). Differences between the overall and the individual degradation
rates of flavonoids were estimated using one-way analysis of variance.
Flavonoid degradation phenotypes were identified using cluster analysis
(28). The statistical significance of all analyses was set atR ) 0.05.

RESULTS AND DISCUSSION

The structures of four flavonoid subgroups, including the A,
B, and C rings and the substitution patterns of each flavonoid
analyzed, are shown inFigure 1. Degradation rate differences
due to different A ring substitution patterns were investigated
by comparing the microbial degradation rates of 4′-hydroxy-
flavone, 5,4′-dihydroxyflavone, 6,4′-dihydroxyflavone, and 7,4′-
dihydroxyflavone. There were no differences when the degra-
dation rates of flavonoids with A ring variations were compared
across all subjects with an averagek ) 0.060( 0.053 h-1 (p
) 0.30) (Figure 2).

Degradation rate differences due to different hydroxylation
patterns on the B ring of flavonoids were analyzed by pairwise
comparison of flavone and 4′-hydroxyflavone, 5,3′-dihydroxy-
flavone, and 5,4′-dihydroxyflavone and chrysin (5,7-dihydroxy-
flavone) and apigenin (5,7,4′-trihydroxyflavone) degradation rate
constants. There were no differences between the degradation
rates of flavone and 4′-hydroxyflavone with an average ofk )
0.065( 0.061 h-1 (p ) 0.83) and between 5,4′-dihydroxyfla-
vone and 5,3′-dihydroxyflavone with an average ofk ) 0.071
( 0.067 h-1 (p ) 0.42). However, the degradation rate of
apigenin with an averagek ) 0.43( 0.27 h-1 was significantly
faster than chrysin with an averagek ) 0.13( 0.11 h-1 (p )
0.01) suggesting that the hydroxyl group at the 4′-position was
important for rapid microbial degradation but only if addi-
tional hydroxyl groups were present at the 5- and 7-positions
(Figure 2).

The degradation rate differences due to C ring substitution
were compared by analyzing the degradation rates of apigenin
(5,7,4′-trihydroxyflavone), genistein (5,7,4′-trihydroxyisofla-
vone), naringenin (5,7,4′-trihydroxyflavanone), and kaempferol
(3,5,7,4′-tetrahydroxyflavone). There were no differences be-
tween the degradation rates of apigenin, genistein, naringenin,
and kaempferol with an averagek ) 0.38 ( 0.25 h-1 (p >
0.05) (Figure 2). These data suggested that the absence of the
2-3 double bond, as found in naringenin, or the addition of a
3-OH group, as in kaempferol, did not affect the rate of
microbial degradation.

Apigenin (5,7,4′-trihydroxyflavone) and 7,4′-dihydroxyfla-
vone are the flavone analogues to genistein (5,7,4′-trihydroxy-
isoflavone) and daidzein (7,4′-dihydroxyisoflavone), respec-
tively. The average degradation rate of genistein was not
different from apigenin with an averagek ) 0.45 ( 0.29 h-1

(p ) 0.13), and the average degradation rate of daidzein was
not different from 7,4′-dihydroxyflavone with an averagek )
0.076( 0.063 h-1 (p ) 0.72) (Figure 2), suggesting that the
attachment of the B ring at the C-3-position for isoflavones,
instead of at the C-2-position for flavones, does not affect the
rate of bacterial degradation.

Genistein, apigenin, kaempferol, and naringenin were the
most rapidly degraded flavonoids as compared to all other
flavonoids examined (p < 0.0001) (Figure 2). These flavonoids
all have a common structure with hydroxyl groups at the 5-,
7-, and 4′-positions. This observation suggested that these three
hydroxyls were important for optimal flavonoid degradation. It
is evident from the results reported here that any flavonoid
missing any one of the 5-, 7-, or 4′-hydroxyls degraded slower
than genistein, apigenin, naringenin, and kaempferol.

Lin et al. (24) was the only other investigation of the
relationship between chemical structures and microbial degrada-
tion of flavonoids (24). Thirteen flavonoids were analyzed
including genistein, apigenin, naringenin, kaempferol, and
daidzein. The other flavonoids included morin (3,5,7,2′,4′-
pentahydroxyflavone), luteolin (5,7,3′,4′-tetrahydroxyflavone),
quercetin (3,5,7,3′,4′-pentahydroxyflavone), wogonin (5,7-di-
hydroxy-8-methoxyflavone), baicalein (5,6,7-trihydroxyflavone),
hesperetin (5,7,3′-trihydroxy-4-methoxyflavanone), diosmetin
(5,7,3′-trihydroxy-4′-methoxyflavone), and neophellamuretin
(3,5,7,4′-tetrahydroxy-8-isoprenylflavanone). Fecal incubations
from rabbits, rats, and three humans were used. Lin et al. (24)
observed that wogonin and diosmetin, which possess methoxyl
groups, were the least degraded flavonoids in all three species
and concluded that the presence of methoxyl groups on the A
or B ring rendered the flavonoid resistant to microbial degrada-
tion (24). Our preliminary experiments have shown similar
results in which glycitein (7,4′-dihydroxy-6-methoxyisoflavone),
which possesses a 6-methoxyl group, was degraded at a slower
rate than genistein,k ) 0.30( 0.21 h-1 vs 0.43( 0.44 h-1 (p
< 0.18) in fecal fermentations from 12 human subjects.
Additional evaluation of the Lin et al. data, however, revealed
that all of the flavonoids with 5-, 7-, and 4′-hydroxyl groups
degraded faster than the flavonoids that were lacking all of these
hydroxyls in all three species, which is in agreement to our
study. The only exception to this generalization was observed
with baicalein (5,6,7-trihydroxyflavone), which had no hydroxyl
groups at the 4′-position. Baicalein was found to be extensively
degraded by human fecal microorganisms but not rabbit or rat
fecal microorganisms. Similarly, we found that chrysin (5,7-
dihydroxyflavone), which has no 4′-hydroxyl group, degraded
significantly faster than flavonoids lacking all three 5-, 7,- and
4′-hydroxyl groups (Figure 2). We speculate that flavonoids

Figure 2. In vitro human microbial degradation rates of flavonoids. FLA,
flavone; 4HF, 4′-hydroxyflavone; 54F, 5,4′-dihydroxyflavone; 64F, 6,4′-
dihydroxyflavone; 74F, 7,4′-dihydroxyflavone; GEN, genistein; API, api-
genin; NAR, naringenin; KAE, kaempferol; 53F, 5,3′-dihydroxyflavone;
CHR, chrysin; and DAI, daidzein. Bars with different letters are significantly
different (p < 0.05, n ) 11). Error bars represent standard deviation from
the mean.

4260 J. Agric. Food Chem., Vol. 53, No. 10, 2005 Simons et al.



with 5- and 7-hydroxyls are moderately degraded by human
gut microorganisms, but the addition of the 4′-hydroxyl
significantly enhances the microbial degradation rate.

Naringenin and kaempferol are structurally similar to apigenin
except that naringenin lacks the 2-3 double bond in the C ring
and kaempferol has an additional hydroxyl group attached to
the C-3-position of the C ring. The lack of significant differences
between the average degradation rates of apigenin, naringenin,
and kaempferol suggests that the 2-3 double bond and a 3-OH
group on the flavonoid structure were not necessary for
microbial degradation as long as the flavonoid possessed
hydroxyl groups at the 5-, 7-, and 4′-positions. Our results
support the work of Lin et al. (24), who reported that these
features did not affect the degradation rate.

Puerarin (daidzein-8-C-â-D-glucopyranoside) and daidzin
(daidzein-7-O-â-D-glucopyranoside) are the two predominant
isoflavones found in kudzu root. Daidzin was rapidly hydrolyzed
to daidzein with ak ) 1.15( 0.01 h-1 and disappeared from
the fecal fermentation mixture within 4 h ofincubation with
fecal microorganisms of two subjects. Daidzein was detected
at 2 h after incubation with daidzin (Figure 3A). In contrast,
puerarin was not hydrolyzed after 48 h with no daidzein being
detected in the puerarin incubation (Figure 3B). These results
suggest thatC-glucosides are resistant toâ-glucosidase activity
as compared toO-glucosides. It is possible that the position
and type of glycosidic linkages of flavonoid glycosides alter
their rate of hydrolysis by the gut microflora.

Kim et al. (29) reported that puerarin was converted to
daidzein after incubation with fresh feces from a single subject
after 48 h, which is in contrast to our observations. No
concentration of daidzein formed from puerarin in the Kim et
al. study was reported, however. Yasuda et al. (30) reported
that the urine of rats orally dosed with 100 mg/kg of pure
puerarin contained unchanged puerarin, daidzein, and the
glucuronide and sulfate conjugates of daidzein and puerarin.
The total amount of urine metabolites excreted in 48 h was
3.63% of the puerarin administered, with daidzein comprising
less than 0.5%. These data suggest that puerarin might be
hydrolyzed to daidzein but not in significant amounts based on
the percentage recovered in urine. Less than 1% of unchanged
puerarin was recovered in the urine and bile suggesting that
puerarin is minimally absorbed intact in the gut (30, 31). The
Yasuda et al. (30) data conflict other studies reporting that
flavonoid glucosides must be hydrolyzed before absorption in
the gut (32-36).

There was considerable variability among the subjects in their
degradation rates for each flavonoid (p < 0.0001). All subjects’

degradation rates for each flavonoid were analyzed using cluster
analysis. Cluster analysis is a statistical program that is able to
group together similar degradation rates. The subjects segregated
into three different degradation rate groupings for each fla-
vonoid. We described these groups as phenotypic differences
in the subjects and called them high, moderate, and low
flavonoid degraders (Table 1). Most of the subjects remained
in their respective flavonoid degradation phenotype groups for
all flavonoids examined suggesting that each phenotype may
exist as a stable characteristic in these subjects (Table 1). These
phenotypes may represent differences in gut microbial popula-
tions or enzyme activities. High flavonoid degraders would be
more likely to produce flavonoid metabolites as a result of
anaerobic metabolism in the gut and thus absorb less intact
flavonoids across the intestinal epithelium. On the other hand,
low flavonoid degraders may produce fewer flavonoid metabo-

Table 1. Cluster Analysis of Subjects’ Degradation Rates and Segregation into Degradation Phenotypes Groupingsa

degradation rate k (1/h)b subject IDc

flavonoid high moderate low high moderate low

flavone 0.18 ± 0.02 0.06 ± 0.02 0.02 ± 0.01 13, 26 5, 8, 9, 18 2, 3, 4, 6, 17
4′-hydroxyflavone 0.16 ± 0.03 0.06 ± 0.02 0.02 ± 0.01 9, 13, 26 5, 18 2, 3, 4, 6, 8, 17
5,3′-dihydroxyflavone 0.16 ± 0.03 0.06 ± 0.02 0.01 ± 0.01 13, 17, 26 4, 5, 8, 9, 18 2, 3, 6
5,4′-dihydroxyflavone 0.21 ± 0.04 0.10 ± 0.03 0.02 ± 0.02 17, 26 5, 13 2, 3, 4, 6, 8, 9, 18
6,4′-dihydroxyflavone 0.11 ± 0.02 0.04 ± 0.01 0.02 ± 0.01 13, 17, 26 2, 5, 18 3, 4, 6, 8, 9
7,4′-dihydroxyflavone 0.18 ± 0.05 0.08 ± 0.03 0.02 ± 0.01 17, 26 4, 13 2, 3, 5, 6, 8, 9, 18
chrysin 0.28 ± 0.06 0.15 ± 0.03 0.03 ± 0.02 9, 13, 26 4, 5, 8 2, 3, 6, 17, 18
daidzein 0.17 ± 0.02 0.12 ± 0.01 0.04 ± 0.01 9, 13, 26 2, 4, 17 3, 5, 6, 8, 18
genistein 1.54 ± 0.00 0.77 ± 0.01 0.18 ± 0.08 13 2, 3, 26 4, 5, 6, 8, 9, 17, 18
apigenin 0.77 ± 0.01 0.53 ± 0.03 0.17 ± 0.07 9, 13, 26 4, 5, 8 2, 3, 6, 17, 18
naringenin 0.77 ± 0.01 0.19 ± 0.01 0.08 ± 0.04 13, 26 4, 5, 6, 8, 9, 17, 18 2, 3
kaempferol 0.70 ± 0.10 0.47 ± 0.07 0.15 ± 0.07 13, 26 2, 8, 9 3, 4, 5, 6, 17, 18

a Degradation phenotypes of subjects. Subjects separated into three significantly different groups for each flavonoid, named high, moderate, and low degraders (p <
0.0001). b Degradation rates expressed as average ± standard deviation from the mean. c Whole numbers shown are subjects’ identification numbers.

Figure 3. Human microbial degradation of isoflavone glucosides vs time.
(A) Disappearance of daidzin and appearance of daidzein. (B) Stability
of puerarin over time. Standard deviation from the mean at each time
point was <0.07.
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lites but have greater probability to absorb intact flavonoids.
Additionally, low flavonoid degraders may experience greater
“in situ” activity from flavonoid aglucons as compared to high
flavonoid degraders.

We have not determined why the human gut microorganisms
prefer to degrade 5,7,4′-trihydroxylflavonoids. Synthesis of
flavonoids in plants comes from resorcinol or phloroglucinol
synthesis from the acetate pathway. This pathway produces the
5,7-hydroxylation pattern in the A ring. The shikimate pathway
produces the B ring and results in 4′-, 3′,4′-, and 3′,4′,5′-
hydroxylation patterns (37). Because genistein, apigenin, nar-
ingenin, and kaempferol are the flavonoid aglucons found
predominantly in the food supply, we believe that flavonoids
with 5,7,4′-hydroxylation patterns dominate in nature, and the
human gut microflora are more exposed to these dietary
compounds and have adapted to metabolize them.

We observed that hydroxyl groups at the 5-, 7,- and
4′-positions of flavonoids are important structural characteristics
for optimal flavonoid degradation by human gut microflora. The
flavonoid degradation rate ranking is as follows: genistein)
apigenin) kaempferol) naringenin> chrysin> daidzein)
5,3′-dihydroxyflavone) 5,4′-dihydroxyflavone) 6,4′-dihy-
droxyflavone) 7,4′-dihydroxyflavone) 4′-hydroxyflavone)
flavone. These observations have great implications for evaluat-
ing the potential bioavailability of flavonoids. A prediction of
the rate of flavonoid degradation by human gut microorganisms
can be made by evaluating the structure of a flavonoid.
Genistein, apigenin, naringenin, and kaempferol were degraded
more rapidly than the other flavonoids without hydroxyl groups
at the 5-, 7-, and 4′-positions. Therefore, genistein, apigenin,
naringenin, and kaempferol may not be as bioavailable in the
colon as compared to more slowly degraded flavonoids, because
they have less time to be absorbed before they are degraded by
the gut microflora. However, the degradation products of
genistein, apigenin, naringenin, and kaempferol may potentially
be bioactive metabolites of interest. The other slowly degraded
flavonoids examined may be more bioavailable because the gut
microflora degraded them at a slower rate, which gives these
flavonoids a greater opportunity to be absorbed.
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